217 research outputs found

    How does torsional rigidity affect the wrapping transition of a semiflexible chain around a spherical core?

    Full text link
    We investigated the effect of torsional rigidity of a semiflexible chain on the wrapping transition around a spherical core, as a model of nucleosome, the fundamental unit of chromatin. Through molecular dynamics simulation, we show that the torsional effect has a crucial effect on the chain wrapping around the core under the topological constraints. In particular, the torsional stress (i) induces the wrapping/unwrapping transition, and (ii) leads to a unique complex structure with an antagonistic wrapping direction which never appears without the topological constraints. We further examine the effect of the stretching stress for the nucleosome model, in relation to the unique characteristic effect of the torsional stress on the manner of wrapping

    Enhanced Wireless Access Technologies and Experiments for W-CDMA Communications

    Get PDF
    This article reviews enhanced wireless access technologies and experimental evaluations of the wideband DS-CDMA physical layer employing intercell asynchronous operation with a three-step fast cell search method, pilot symbol-assisted coherent links, signal-to-interference plus background noise power ratio-based fast transmit power control, site diversity (soft/softer handover), and transmit diversity in the forward link. The article also presents link-capacity-enhancing techniques such as using an interference canceller and adaptive antenna array diversity receiver/transmitter, and experimental results in a real multipath fading channel. The laboratory and field experiments exemplify superior techniques of the W-CDMA physical layer and the potential of the IC and AAAD transceiver to decrease the mobile transmit power in the reverse link and multipath interference from high-rate users with large transmit power in the forward link

    ONLINE MEASUREMENT OF VOCS EMISSIONS FROM VEHICLES USING A PORTABLE SAMPLING SYSTEM

    Full text link
    Joint Research on Environmental Science and Technology for the Eart

    Paradoxical activation of c-Src as a drug-resistant mechanism

    Get PDF
    抗がん剤抵抗性の新規メカニズムの解明 --薬剤抵抗性がん細胞は抗がん剤により増殖する--. 京都大学プレスリリース. 2021-03-25.ATP-competitive inhibitors have been developed as promising anti-cancer agents. However, drug-resistance frequently occurs, and the underlying mechanisms are not fully understood. Here, we show that the activation of c-Src and its downstream phosphorylation cascade can be paradoxically induced by Src-targeted and RTK-targeted kinase inhibitors. We reveal that inhibitor binding induces a conformational change in c-Src, leading to the association of the active form c-Src with focal adhesion kinase (FAK). Reduction of the inhibitor concentration results in the dissociation of inhibitors from the c-Src-FAK complex, which allows c-Src to phosphorylate FAK and initiate FAK-Grb2-mediated Erk signaling. Furthermore, a drug-resistant mutation in c-Src, which reduces the affinity of inhibitors for c-Src, converts Src inhibitors into facilitators of cell proliferation by enhancing the phosphorylation of FAK and Erk in c-Src-mutated cells. Our data thus reveal paradoxical enhancement of cell growth evoked by target-based kinase inhibitors, providing potentially important clues for the future development of effective and safe cancer treatment

    Accuracy of ventricular volume and ejection fraction measured by gated myocardial SPECT: Comparison of 4 software programs

    Get PDF
    金沢大学大学院医学系研究科Gated myocardial perfusion SPECT has been used to calculate ejection fraction (EF) and end-diastolic volume (EDV) and has correlated well with conventional methods. However, the comparative accuracy of and correlations across various types of gated SPECT software are not well understood. Methods: Mathematic phantoms of cylindric-hemispheric hybrid models, ranging in volume from 34 to 266 mL, were generated. The clinical cases consisted of 30 patients who participated in a radionuclide angiography and gated blood-pool (GBP) study in addition to undergoing 99mTc-sestamibi gated SPECT. Four kinds of software, Quantitative Gated SPECT (QGS), the Emory Cardiac Toolbox (ECT), 4D-MSPECT, and Perfusion and Functional Analysis for Gated SPECT (pFAST) were used to compute EF and EDV, and the results were analyzed by multiple comparisons tests. Patients were classified into 4 groups (i.e., no defect, small defect, large defect, and small heart) so that factors affecting variation could be analyzed. Results: In mathematic models ≥74 mL, volume error was within ±15%, whereas for a small volume (34 mL), QGS and 4D-MSPECT underestimated the volume and pFAST overestimated it. The respective intra- and interobserver reproducibility of the results was good for QGS (r=0.99 and 1.00), ECT (r=0.98 and 0.98), and 4D-MSPECT (r=0.98 and 0.98) and fair for pFAST (r=0.88 and 0.85). The correlation coefficient for EF between gated SPECT and the GBP study was 0.82, 0.78, 0.69, and 0.84 for QGS, ECT, 4D-MSPECT, and pFAST, respectively. The correlation coefficient for EDV between gated SPECT and the GBP study was 0.88, 0.89, 0.85, and 0.90, respectively. Although good correlation was observed among the 4 software packages, QGS, ECT, and 4D-MSPECT overestimated EF in patients with small hearts, and pFAST overestimated the true volume in patients with large perfusion defects. Correlation coefficients among the 4 kinds of software were 0.80-0.95 for EF and 0.89-0.98 for EDV. Conclusion: All 4 software programs showed good correlation between EF or EDV and the GBP study. Good correlation was observed also between each pair of quantification methods. However, because each method has unique characteristics that depend on its specific algorithm and thus behaves differently in the various patient subgroups, the methods should not be used interchangeably

    Interfacial fracture strength property of micro-scale SiN/Cu components

    Get PDF
    AbstractThe strength against fracture nucleation from an interface free-edge of silicon-nitride (SiN)/copper (Cu) micro-components is evaluated. A special technique that combines a nano-indenter specimen holder and an environmental transmission electron microscope (E-TEM) is employed. The critical load at the onset of fracture nucleation from a wedge-shaped free-edge (opening angle: 90°) is measured both in a vacuum and in a hydrogen (H2) environment, and the critical stress distribution is evaluated by the finite element method (FEM). It is found that the fracture nucleation is dominated by the near-edge elastic singular stress field that extends about a few tens of nanometers from the edge. The fracture nucleation strength expressed in terms of the stress intensity factor (K) is found to be eminently reduced in a H2 environment
    corecore